نگهدارنده های خطی مهتری روی فضای l^p(i)

thesis
abstract

چکیده: فرض کنیدvوw دو فضای برداری حقیقی و r یک رابطه روی v و w باشد. تبدیل خطی t:v?w را یک نگهدارنده r گویند هرگاه برای هر x,y ? v، xry ?txrty در این پایان نامه v=w:=lp(i) و r رابطه مهتری در نظر می گیریم. سپس بعضی از خواص مهم این رابطه را به دست آورده و همه عملگرهای روی این فضا مانند t:lp(i)?lp(i) را نگهدارنده مهتری باشند تعیین می کنیم. نشان می دهیم در این دسته از نگاشت ها تفاوت های قابل توجهی میان دو حالت (الف) ?>p>1، (ب)p=1، به وجود می آید.

similar resources

مروری بر مهتری های عادی و تعمیم یافته و بررسی ساختار نگهدارنده های خطی آنها

در این مقاله مفهوم مهتری در گونه های مختلف برداری، ماتریسی، چندگانه و تعمیم یافته بررسی می شود. هر یک از انواع مهتری یک رابطه هم ارزی روی مجموعه ماتریس ها تعریف می کند. ساختارنگه دارنده های خطی بعضی از این رابطه های هم ارزی را مشخص می کنیم.

full text

ut-مهتری و نگهدارنده های خطی آن

فرض کنید {m_(n,m جبر ماتریس های حقیقی n×m باشد. ماتریس r با درایه های نامنفی را سطری تصادفی می گوییم هرگاه مجموع درایه های روی هر سطر آن یک باشند. اگر x,y?r^n باشند، بردار x را، -ut مهتر (-lt مهتر) بردار y گوییم هرگاه ماتریس بالامثلثی (پایین مثلثی) سطری تصادفی مانند r یافت شوند به گونه ای که x=ry. ماتریس r سطری تصادفی مضاعف می گوییم هرگاه مجموع درایه های روی هر سطر آن یک باشند. اگر x,y?r^n باشن...

مروری بر مهتری های عادی و تعمیم یافته و بررسی ساختار نگهدارنده های خطی آنها

در این مقاله مفهوم مهتری در گونه های مختلف برداری، ماتریسی، چندگانه و تعمیم یافته بررسی می شود. هر یک از انواع مهتری یک رابطه هم ارزی روی مجموعه ماتریس ها تعریف می کند. ساختارنگه دارنده های خطی بعضی از این رابطه های هم ارزی را مشخص می کنیم.

full text

نگاشت های خطی نگهدارنده طیف

در این مقاله نشان می دهیم که اگر a جبر باناخ یکدار و b یک  $c^*$-جبر نامتناهی محض و دارای ایده آل ماکسیمال جابه جایی ناصفر و  ρ:a→b  نگاشت خطی پوشا یکدار و نگهدارنده طیف باشد آنگاه  ρ همریختی جردن است

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده ریاضی

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023